Efficient Preconditioners Based on Fictitious Domains for Elliptic Fe{problems with Lagrange Multipliers Eecient Preconditioners Based on Ctitious Domains for Elliptic Fe{problems with Lagrange Multipliers
نویسندگان
چکیده
The macro{hybrid formulation based on domain decomposition is considered for elliptic boundary value problems with both symmetric positive deenite and indeenite operators. The problem is discretized by the mortar element method, which leads to a large{scale sparse linear system with a saddle{ point matrix. In the case of symmetric and positive deenite operators, a block diagonal preconditioner based on ctitious domains is proposed, which is spectrally equivalent to the original saddle{point matrix. In the case of the Helmholtz operator with the absorbing boundary conditions, a special preconditioner is introduced such that the subspace of constraints remains invariant with respect to the preconditioned GMRES method. Results of numerical experiments are presented.
منابع مشابه
Substructuring Preconditioning for Finite Element Approximations of Second Order Elliptic Problems. Ii. Mixed Method for an Elliptic Operator with Scalar Tensor
Abstract This work continues the series of papers in which new approach of constructing alge braic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general grid is proposed The linear system arising from the mixed meth ods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which cor...
متن کاملA spectral fictitious domain method with internal forcing for solving elliptic PDEs
A fictitious domain method is presented for solving elliptic partial differential equations using Galerkin spectral approximation. The fictitious domain approach consists in immersing the original domain into a larger and geometrically simpler one in order to avoid the use of boundary fitted or unstructured meshes. In the present study, boundary constraints are enforced using Lagrange multiplie...
متن کاملMultilevel Preconditioners for Mixed Methods for Second Order Elliptic Problems
A new approach of constructing algebraic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general geometry is proposed The linear system arising from the mixed methods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which corresponds to a linear system generated by standard nonco...
متن کاملA moving mesh fictitious domain approach for shape optimization problems
A new numerical method based on fictitious domain methods for shape optimization problerns governed by the Poisson équation is proposed. The basic idea is to combine the boundary variation technique, in which the mesh is moving during the optimization, and efficient fictitious domain preconditioning in the solution of the (adjoint) state équations. Neumann boundary value problems are solved usi...
متن کاملA ctitious domain method for linear elasticity problems
A ctitious domain method based on boundary Lagrange multipliers is proposed for linear elasticity problems in two dimensional domains. The solution of arising saddle-point problem is obtained iteratively using MINRES method with a positive deenite block diagonal preconditioner which is based on a fast direct solver for diiusion problems. Numerical experiments demonstrate the behavior of conside...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996